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1 INTRODUCTION

In recent years there have been a number of papers dealing with methods
for remote temperature sensing based on applying transform theory to the
radiative tranfer equation. King, Ilohlfeld, and Kilian (1989) have shown
that using differential inversion it is possible to successfully determine tem-
perature profiles from measurements of the upwelling intensities in the at-
mosphere. In this research project an alternative transform method based
on optical measure theory is developed. Previous work on this method has
been carried out by by King and Leon (1989,1990) and by Leon (1990). The
optical measure theory method has the advantage that it does not require
any computations of numerical derivatives. Instead the radiance profile is
approximated by a rational function. The Planck intensity is then deter-
mined as the inverse transform of the rational function.

In Section 2 we present techniques for approximating the radiance pro-
file based op rational interpolation and nonlinear least squares data fitting.
Optical measure theory permits the inversion of non-Laplacian exponential
kernels. Consequently, in Section 3, we extend the mathematical models to
include generalized exponential weighting functions. In Section 4 we discuss
alternative nonlinear data fitting techniques. In particular we introduce the
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concept of total nonlinear least squares data fitting. Some test results are
presented in Section 5 and conclusions follow in Section 6.

2 RATIONAL APPROXIMATION OF RADI-
ANCE PROFILES

Using radiative transfer theory one can relate the Planck intensity to the
upwelling intensity of the atmosphere. This ielationship can be expressed in
terms of an integral equation of the first kind. Specifically the relationship
is given by

j.. - B(p)W(p1P)dp/p (1)

where W(p/l) is a kernel weight function that peaks at p = P and R(P3)
denoces the radiance of the wavelength channel whose weight function peaks
at p=

If we set
- 1

W(z) = ze and sa

then equation (1) can be expressed as a Laplace transform and consequently
we can solve for the Planck function

B(p) = C'

We can think of B(p) and R(P3) as transform pairs. Once a representation
for R has been decided upon, then B can be determined analytically as an
inverse Laplace transform. -"

---- The H-function inversion theory of Chandrasekhar, (1950) suggests that
R should be represented as a rational function. If we set

R(P) -" dt -h-d2P +'. + dj+1P + I + C'ý (2)

then
R(;') di d2  d), w+ w+ +...,+ +

•____3 ... 32 S 3 + Ci

and
B(p)=di +d 2p+...+ dp ,+ZwieCP (3)

pi + wie-l
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The coefficients in equation (2) can be determined from the data by ratio-
nal interpolation or by nonlinear least squares. Denote the radiance value
corresponding to Pi by R, for i = 1,...,m If one represents the radiance
function as a rational function of the form

R(P) =(n+1= m -1)

then R will interpolateý (Pj, Rj) if and only if

alit + a 2 in- 1 +... + an+ + an+2Pi- 1R 1 +-" +-a =+a iR, (4)

The coefficients ai are determined by solving the linear system (4). The
residue form of R can be computed as an inverse convolution and from this
one can determine the coefficients for equations (2) and (3). Generally these
equations need only have a small number of components.' It is possible to
get a good fit with j = 1,2 or 3 and I = 1 or 2. If one takes j = 2 and
I = 2, it is possible that for some data sets the interpolating function will
have a positive pole, (c, < 0), even though this is impossible for an actual
radiance profile. When this happens the weight wi corresponding to the pole
will be much smaller than the weight corresponding to the other rational
component. Thus if one sets wi = 0, then the resulting function will give a
good approximation to the data points. -

In practice one can obtain a better approximation to fhe radiance data
and avoid the problem of positive poles by using nonlinear least squares.
The rational interpolating function can be taken as starting approximation
for an iteratively computed nonlinear least squares fit to the data of the
form

S.....R(P) =zi + x2ý + ....- + x,+Iti + Z'''(5)
Z+I+"i=1 3+l+1+iP

Initially the xi coefficients are determined from the coefficients of the rational
interpolating function of the form (2). Whenever the interpolating function
has a positive pole, i.e, a coefficient ci < 0, one sets the corresponding
coefficient xj+,+I+i in (5) equal to 1 and the weight zj+t+i can be set equal
to O.

3
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Figure 1. Nonlinear least squares radiance function for set of TOVS data

The choice of a rational function to represent the radiance data is mo-
tivated by the physics of the atmosphere. In practice the nonlinear least
squares approximation gives a very good fit to the radiance data. The coef-
ficients of the rational function can be used to determine a Planck function
of the form (3).

In Figure 1, a least squares fit of the form (5) is given for a typical data
set obtained from the NOAA TIROS Operational Vertical Sounder (TOGS).

3 GENERALIZED EXPONENTIAL INVERSION

We can obtain a natural generalization of our previous results by taking a
more general form for the weight function. If we set

V(z) = Vk(z) = 1kzexpk(z)

4
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where\ , 1

* '7k -kl/k~r

and 
k kexPk(z) = exp(-zk/k)

then it follows that

R(P) = 00 B(p)Wk(p/)-dp
10 P

If R(P) is of the form (2), then the Planck intensity B(p) = Bk(p) will
be of the form

Bk(p)=di + d2P+.+- pj + wi expk(cip) (6)

Note that equations (3) and (6) are the same in the case k = 1.

4 TOTAL NONLINEAR LEAST SQUARES

A number of algorithms have been developed for nonlinear least squares
fitting. Two algorithms using gradient methods to minimize the residual
functions were developed specifically for rational fits of the form (5). These
algorithms require good starting approximations and may converge to a lo-
cal rather than a global minimum. The standard Nelder-Meade Simplex
Algorithm, however, does seem to give satisiactory iesults even though con-
vergence is rather slow. It may be possible to speed up convergence by
taking some sort combination of the Nelder-Meade and gradient methods.

It should be noted that the standard nonlinear least squares techniques
all seek to minimize the residual errors for the dependent variable. For the
type of radiance fitting problem considered here, the values of the indepen-
dent variable P are also determined from satellite data and may involve some
error. In fact, early experiments seem to indicate that the computed Planck
function is more sensitive tn perturbations in the Pi values than to changes
in the Ri values. In order to reflect this in the data fitting, algorithms have
been devised for total nonlinear least squares fits. In this process 'he resid-

S" " ual is defined in cerms of the sum of the squares of the distances of the points
(pi, Ri) to tangent lines to the curve (5) at the points.(Pi, R(jfi)). Indeed a
parameter t has been incorporated into the data fitting algorithms to specify
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which type of fit is used. If t =0, then the usual nonlinear least squares fit
is used to minimize the residuals of the dependent variable. If t = 1, then
a total least squares fit is computed. If t = 2, then a rational least squares
fit is computed to minimize the residuals of the independent variable. For
values of t between 0 and 2, intermediate types of fits are computed.

5 TEST RESULTS

Equation (1) is an integral equation of the first kind and consequently the
problem of finding a solution is ill-posed. In addition to testing t~he optical
measure theory method we also tested some of the standard methods used
for solving integral integral equations of the first kind.

The standard techniques involve discretizing the equation and adding
regularization conditions. The problem is then translated into a linear sys-
tem of equations with qiuadratic constraints. The constrained problem can
be solved using the methods proposed by Gander, (1981). However, when
these techniques were applied to data sets obtained from the NOAA TIROS
Operational Vertical Sounder (TOyS), the resulting matrices had very low%
numerical rank. Consequently, even with regularization conditions we were
unable to obtain meaningful results. On the other hand, the transform

* ~methods have smoothness constraints and additionjd structure built in. The
rational form (2i) can be computed in a numerically stable manner and ý.he
coefficients define a unique Planck function.

The interpolation and nonlinear least squares algorithms have been tested
extensively on simulated data and on the TOVS data. The algorithms are
numerically stable. Figuires 2 through 5 represent Planck functions that
were generated using the samc data set as in Figure 1. Figure 2 shows a
semilog plot of the Planck function. The pressures are given in millibars on
the vertical axis. Figure 3 shows the Planck function for the data set de-
rived by generalized exponential inversion with k = 0.8. Figure 4 shows the
Planck function derived by generalized exponential inversion with k = 1.2.
Figure 5 shows all three Planck functions plotted as functions of p on the
same axis system.

6
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Figure 3. Generalized exponential inversion with k = 0.8
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Figure 4. Generalized exponential inversion with k =1.2

7S

78

'S

4S

a0 Us488se s 1088

Figure 5. k =0.8, 1, 1.2 inverses
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The question that still is outstanding is how to choose j; the degree
of the polynomial component of ihe fit, and how to choose I, the i~umber
of hyperbolic components. Although it is reasonable that both of these
numbers should be relatively small, it is not possible to give a definitive
answer as to the optimal values of j and I based solely on the TOVS data sets
and simulated data. It is anticipated that these questions will be answered
when future data sets with more sensing channels in the appropriate ranges
become available.

6 CONCLUSIONS

Although transfer theory can be used to relate the Pianck intensity to the
upwelling intensity in the atmosphere, the relation is expressed in the form
of an integral equation of the first kind. Such equations are ill-posed and
consoquently do not have unique numerical solutions. Adding regularization
conditions does not solve the problem. For data sets like those obtained from
the TOVS data, there is not enough information to determine the Planck
function usi.ng matrix methods with appropriate smoothness constraints.
More assumptions relative to the physics of the atmosphere must be added.
In this regard the transform methods based on optical measure theory seem
to work well. The key step is the representation of the radiance pnrofile by a
rational function. This can be accomplished in a numerically stable manner
using nonlinear least squares fitting algorithmns.
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